熱酸化処理による V₂O₅ 薄膜の作製と抵抗−温度特性の評価

薄膜・表面物性研究室 奥山 大雅 S111037 Taiga OKUYAMA

背景と目的

五酸化バナジウム (V_2O_5) は、 VO_2 、 V_2O_3 等の酸化物バナジウムの中で最も安定で作製が容易である。また化学、電気デバイス、Li イオン電池の電極材に応用されており、 280° Cから 310° Cの範囲で金属-絶縁体転移を示すといった報告もある [1]。本研究では反応性スパッタリングを用いてVOx 薄膜を作製し、 O_2 フロー中での加熱処理を 2 時間行うことで V_2O_5 薄膜を得た。室温から 400° C までの温度範囲における抵抗測定の手法を確立し、抵抗値の温度依存性について調べた。

実験方法

スパッタ装置に Ar 流量 10.0 sccm e流し、圧力 0.80 Pa に調整したのち、そこに O_2 流量 1.5 sccm e加えて DC 電力 50 W で反応性スパッタリングを行った。1 h の製膜によって石英基板上に VO_X 薄膜を作製し、得られた VO_X 薄膜を O_2 中 400° C、または 450° Cで 2 h 加熱処理を行うことによって V_2O_5 薄膜を得た。その後電気伝導性の高いドータイトを銀ペーストとして用いて V_2O_5 薄膜に リード線を接着し、接合を安定化させるために V_2 中で 200° Cまでの昇温を 2 回行った。抵抗-温度変化の可逆性を確認し、その後 V_2 中で 400° Cまで昇温し抵抗-温度特性を測定した。

結果および考察

図1は N_2 中で200 $^{\circ}$ Cまでの昇温を行ったときの抵抗-温度特性のグラフである。測定結果から、銀ペーストを V_2O_5 膜に接着した後にいったん N_2 中で200 $^{\circ}$ Cの加熱を行うと、可逆性を持つ抵抗-温度特性となり、安定した電気接触が得られた。

その後の N₂ 中 400℃の測定では、350℃付近か

ら抵抗値は大きく上昇し 380[°]C付近でおよそ 10倍の値を示した。さらに加熱すると、およそ 1/1000 に低下した。これは不可逆な変化であった。 実際に、 O_2 熱処理後の V_2O_5 膜は黄褐色を示し ていたが、 N_2 中加熱後の試料は透明性を持った灰 色となった(図 2)。 N_2 中の加熱によって、 V_2O_5

[1] M. Kang, *et al.* Appl. Phys. Lett. **98**, (2011) 131907

膜が還元した可能性があると考えている。

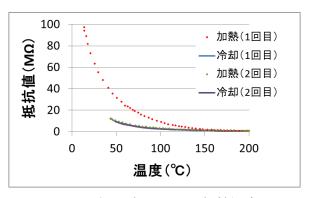


図 1. N₂ 中 200℃における抵抗測定

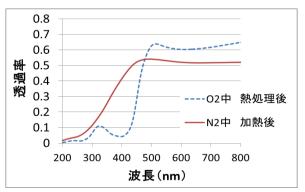


図 2. O₂中熱処理後とN₂中加熱後の試 料の透過率の比較