スパッタ成膜速度分布のガス圧力および ターゲットー基板配置への依存性

薄膜・表面物性研究室 山崎 遼 M136134 Ryo Yamazaki

背景と目的

スパッタリングによる成膜では、放電ガス圧力 やターゲット基板間の距離(T-S距離)により、 スパッタされた粒子が基板に到達するまでの輸送 過程が複雑に変化する。低圧下では、スパッタ粒 子は放電ガスとあまり衝突せず、高速のまま基板 に到達する。圧力が上がると放電ガスと粒子との 衝突回数が増えて、方向変化や減速・熱化が起こ る。この現象により拡散的な輸送が支配的となり、 容器壁面の影響をより強く受けるようになる。こ のため、高圧になるほど成膜速度は減少する。

本研究では、原子質量の異なる金属をターゲッ トとして DC スパッタリングを種々の条件で行い、 成膜速度を計測した。これよりスパッタ粒子の輸 送過程で、ガス分子との衝突がもたらす影響につ いて考察した。

実験方法

図1のスパッタ装置で、 Al (27), Ti (47.9), Cu (63.5), Mo (96)をターゲットに 用いて DC マグネトロン スパッタリングを行った (括弧内の数字は原子 量)。放電ガス Ar 10 sccm を流入させ、容器内ガス 圧力 0.5~20 Pa、DC 放電

電力 50 W, 100 W で放電した。T-S 距離は 40~70 mm の間で 5 mm 毎に変え、基板ホルダの中心 (Center) と端 (Edge) に設置した水晶振動子膜厚 モニタ(QCM)を用いて、成膜速度を測定した。

実験結果と考察

図2は Center で測定した成膜速度のT-S 距離 依存性を両対数グラフで示したものである。成膜 速度はT-S 距離の増加に対し、ほぼべき乗関数的

に減少した。両対数プロットの傾きは高圧の方が 急で、また成膜速度そのものも小さくなった。こ のグラフを $R \propto d^{-n}$ (R:成膜速度、d:T-S 距離) でフィッティングし、傾きを示す指数 n を求めた。 図3は圧力と指数nとの関係である。圧力が高い ほど指数nが大きくなった。指数nが大きく変化 するのはスパッタ粒子の輸送過程が弾道的なもの から拡散的なものに移行して、ターゲット近傍の 装置壁面が吸収境界として作用した結果と考えら れる。元素により指数nに変化の生じる圧力が違 うのは、Ar 原子との衝突に伴うエネルギー伝達や 運動量交換の程度が違うからである。ターゲット 元素の質量が大きい方が減速や方向変化をしにく く、拡散的な移動になりにくい。Edge での成膜 速度は Center 部より小さいが、圧力が高いほど Center 部に対しての低下が激しかった。指数nは

Center 部よりも値が小さく、拡散的輸送への変化 が早く起きていると考えられる。

以上までの成果は[1]の論文として報告した。この結果は我々の研究室で行われたシミュレーションの結果[2]とも整合していた。

図4は膜厚均一性(Edge/Center)のT-S距離依存性 であり、放電電力による違いを示した。100Wの とき、同じ圧力、距離での成膜速度が大きかった。

電力50Wと100Wの条件で実験測定した成膜速 度Edge/Center 比の T-S 距離依存性を図4で比較し た結果、Alを除けば違いはほとんど見られなかった。 Alについて測定結果が異なるのはスパッタ粒子の 放出角度分布が影響していると考えられる。

膜厚分布のシミュレーション

実験の結果、熱化の前後で成膜速度や膜厚分布 の T-S 距離依存性が変化すること、熱化は軽い金 属元素ほど低い圧力で生じることなどがわかった。 ただし、実際に膜厚分布を予測するには、ターゲ ットからのスパッタ粒子の放出角度分布の情報が 不可欠である。実際に放出角度分布は、ターゲッ ト金属の種類や放電電圧によって顕著に変化する ことが実験によって示されている [3]。そこで、 低圧領域での成膜速度や膜厚分布の実験結果を簡 単な無衝突近似の計算結果と比較して、スパッタ ターゲットからの放出分布について考察した。

図 1 の装置に対応する境界条件で、分割したタ ーゲットの各領域をQCMから見込む立体角を幾何 学的に求め、積算することで成膜速度を計算した。 放出角度分布としては、[3] で用いられていたオー バーコサイン分布 ($I = \cos^n \theta$) およびアンダーコ サイン分布 $(J = \cos \theta (1 + \beta \cos^2 \theta))$ を仮定した また、スパッタ実験後に実測したエロージョンの形 状を考慮した。

計算結果と考察

計算で得た Center 成膜速度 (R)のT-S距離 (d)依存性は、d の大きい領域で $R \propto d^{-2} となり、$ 低圧での実験結 果図2(a)に対応 する結果となっ た。また d の 小さい領域も含

め、実験の結果と比較的良い一致を示した。

図6に、角度分布の効果がより顕著に現れると 考えられる Edge/Center 比について、実測、計算結 果をそれぞれ示した。放電電圧 500 V では、Al は オーバーコサイン、Ti, Mo はアンダーコサイン、 Cu は両者の中間の放出角度分布を示す、という結 果が得られていたが[3]、我々の結果では全ての実 験結果はアンダーコサインを示唆する傾向となっ ている。実験を行った装置形状ではマイナスの値 を持つβが減少し、スパッタ粒子の横への放出割 合が広がるほど膜の均一性が良くなっている。

- [1] T. Nakano, R.Yamazaki and S.Baba: J. Vac. Soc. Jpn. 57 (2014) 152
- [2] T. Nakano and S. Baba: JJAP 53 (2014) 038002
- [3] T. Yamazaki, et al.: J. Vac. Soc. Jpn. 56 (2013) 382